Skip to main content

Advertisement

Log in

Low Young’s Modulus and High Strength Obtained in Ti-Nb-Zr-Cr Alloys by Optimizing Zr Content

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A series of Ti-29Nb-(4, 7, 10, 13)Zr-2Cr alloys were fabricated to investigate the influence of Zr content on microstructures and mechanical properties. All the four alloys present a single β phase after solution treatment. With the increase in Zr content, the 0.2% proof stress is gradually increased from 388 MPa in Ti-29Nb-4Zr-2Cr to 713 MPa in Ti-29Nb-13Zr-2Cr. The Young’s modulus gradually is decreased from 80 GPa in Ti-29Nb-4Zr-2Cr to 63 GPa in Ti-29Nb-13Zr-2Cr. The elongation shows the same trend as that of Young’s modulus. The changes of mechanical properties are influenced by the β stability and solid solution strengthening effect, which are both enhanced by Zr addition. The Ti-29Nb-13Zr-2Cr alloy presents a Young’s modulus of 63 GPa, tensile strength of 730 MPa and elongation of 18% and is a promising biomedical material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q.Z. Chen and G.A. Chen, Metallic implant Biomaterials, Mater. Sci. Eng. R, 2015, 87, p 1–57

    Google Scholar 

  2. F.A. Shah, M. Trobos, P. Thomsen, and A. Palmquist, Commercially Pure Titanium (cp-Ti) Versus Titanium Alloy (Ti6Al4V) Materials as Bone Anchored Implants—is One Truly Better than the Other?, Mater. Sci. Eng. C, 2016, 62, p 960–966

    CAS  Google Scholar 

  3. M. Niinomi, Recent Metallic Materials for Biomedical Applications, Met. Mat. Trans. A, 2002, 33A, p 477–486

    Google Scholar 

  4. M. Niinomi, M. Nakai, and J. Hieda, Development of new Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8, p 3888–3903

    CAS  Google Scholar 

  5. M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement—A Materials Science Perspective, Biomaterials, 1998, 19, p 1621–1639

    CAS  Google Scholar 

  6. M. Niinomi, Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods, Sci. Technol. Adv. Mater., 2003, 4, p 445–454

    CAS  Google Scholar 

  7. L.C. Zhang and L.Y. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 2019, 21, p 1–29

    Google Scholar 

  8. M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, and M. Morinaga, Phase Stability Change with Zr Content in β-type Ti-Nb Alloys, Scr. Mater., 2007, 57, p 1000–1003

    CAS  Google Scholar 

  9. A. Mishra, J.A. Davidson, R. Poggie, P. Kovacs, and T.J. Fitzgerald, Mechanical and Tribological Properties and Biocompatibility of diffusion Hardened Ti-13Nb-13ZrA New Titanium Alloy for Surgical Implants, ASTM STP, 1996, 1272, p 96–116

    Google Scholar 

  10. M. Lai, Y. Gao, B. Yuan, and M. Zhu, Effect of Pore Structure Regulation on the Properties of Porous TiNbZr Shape Memory Alloys for Biomedical Application, J. Mater. Eng. Perform., 2015, 24, p 136–142

    CAS  Google Scholar 

  11. S. Ozan, J.X. Lin, Y.C. Li, Y.W. Zhang, K. Munir, H.W. Jiang, and C. Wen, Deformation Mechanism and Mechanical Properties of a Thermomechanically Processed β Ti-28Nb-35.4Zr Alloy, J. Mech. Behav. Biomed. Mater, 2018, 78, p 224–234

    CAS  Google Scholar 

  12. Q. Li, M. Niinomi, M. Nakai, Z.D. Cui, S.L. Zhu, and X.J. Yang, Effect of Zr on Super-Elasticity and Mechanical Properties of Ti-24 at% Nb-(0, 2, 4) at% Zr Alloy Subjected to Aging Treatment, Mater. Sci. Eng., A, 2012, 536, p 197–206

    CAS  Google Scholar 

  13. C.D. Rabadia, Y.J. Liu, G.H. Cao, Y.H. Li, C.W. Zhang, T.B. Sercombe, H. Sun, and L.C. Zhang, High-Strength β Stabilized Ti-Nb-Fe-Cr Alloys with Large Plasticity, Mater. Sci. Eng., A, 2018, 732, p 368–377

    CAS  Google Scholar 

  14. A.B. Elshalakany, S. Ali, A.A. Mata, A.K. Eessaa, P. Mohan, T.A. Osman, and V.A. Borrás, Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy, J. Mater. Eng. Perform., 2017, 26, p 1262–1271

    CAS  Google Scholar 

  15. M. Nakai, M. Niinomi, X.F. Zhao, and X.L. Zhao, Self-adjustment of Young’s Modulus in Biomedical Titanium Alloys During Orthopaedic Operation, Mater. Letters., 2011, 65, p 688–690

    CAS  Google Scholar 

  16. Q. Li, G.H. Ma, J.J. Li, M. Niinomi, M. Nakai, Y. Koizumi, D.X. Wei, T. Kakeshita, T. Nakano, A. Chiba, X.Y. Liu, K. Zhou, and D. Pan, Development of Low-Young’s Modulus Ti-Nb-Based Alloys with Cr Addition, J. Mater. Sci., 2019, 54, p 8675–8683

    CAS  Google Scholar 

  17. C.D. Rabadia, Y.J. Liu, L.Y. Chen, S.F. Jawed, L.Q. Wang, H. Sun, and L.C. Zhang, Deformation and Strength Characteristics of Laves Phases in Titanium Alloys, Mater. Des., 2019, 179, p 1–9

    Google Scholar 

  18. M. Nakal, M. Niinomi, and T. Oneda, Improvement in Fatigue Strength of Biomedical β-type Ti-Nb-Ta-Zr Alloy While Maintaining Low Young’s Modulus Through Optimizing ω-Phase Precipitation, Metall. Mater. Trans. A, 2012, 43A, p 294–302

    Google Scholar 

  19. N. Hafeez, S.F. Liu, E. Lu, L.Q. Wang, R. Liu, W.J. Lu, and L.C. Zhang, Mechanical Behavior and Phase Transformation of β-Type Ti-35Nb-2Ta-3Zr Alloy Fabricated by 3D-PRINTING, J. Alloys Compd., 2019, 790, p 117–126

    CAS  Google Scholar 

  20. L.C. Zhang, L.Y. Chen, and L.Q. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Adv. Eng. Mater., 2020, 22, p 1–37

    Google Scholar 

  21. L. Pawlowski, Finely Grained Nanometric and Submicrometric Coatings by Thermal Spraying: A Review, Surf. Coat. Technol., 2008, 202, p 4318–4328

    CAS  Google Scholar 

  22. P. Favia and R. d’Agostino, Plasma Treatments and Plasma Deposition of Polymers for Biomedical Applications, Surf. Coat. Technol., 1998, 98, p 1102–1106

    CAS  Google Scholar 

  23. H. Lee, S. Mall, and W.Y. Allen, Fretting Fatigue Behavior of Shot-Peened Ti-6Al-4V Under Seawater Environment, Mater. Sci. Eng., A, 2006, 420, p 72–78

    Google Scholar 

  24. T. Fu, Z. Zhan, L. Zhang, Y. Yang, Z. Liu, J. Liu, L. Li, and X. Yu, Effect of Surface Mechanical Attrition Treatment on Corrosion Resistance of Commercial Pure Titanium, Surf. Coat. Technol., 2015, 280, p 129–135

    CAS  Google Scholar 

  25. L.Q. Wang, L.C. Xie, Y.T. Lv, L.C. Zhang, L.Y. Chen, Q. Meng, J. Qu, D. Zhang, and W.J. Lu, Microstructure Evolution and Superelastic Behavior in Ti-35Nb-2Ta-3Zr Alloy Processed by Friction Stir Processing, Acta Mater., 2017, 131, p 499–510

    CAS  Google Scholar 

  26. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Design and Mechanical Properties of New β Type Titanium Alloys for Implant Materials, Mater. Sci. Eng., A, 1998, 243, p 244–249

    Google Scholar 

  27. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, and S. Niwa, Development of Low Rigidity β-type Titanium Alloy for Biomedical Applications, Mater. Trans., 2002, 43, p 2970–2977

    CAS  Google Scholar 

  28. N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato, and M. Niinomi, Experiment Study on Fracture Fixation with Low Rigidity Titanium Alloy, J. Mater. Sci.: Mater. Med., 2008, 19, p 1581–1586

    CAS  Google Scholar 

  29. R.P. Kolli, W.J. Joost, and S. Ankem, Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys, JOM, 2015, 67, p 1273–1280

    CAS  Google Scholar 

  30. Y.L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y.L. Zhou, R. Yang, and A. Suzuki, Young’s Modulus and Mechanical Properties of Ti-29Nb-13Ta-4.6Zr in Relation to α″ Martensite, Metall. Mater. Trans. A, 2002, 33A, p 31–37

    Google Scholar 

  31. Y. Zhou, Y.X. Li, X.J. Yang, Z.D. Cui, and S.L. Zhu, Influence of Zr Content on Phase Transformation, Microstructure and Mechanical Properties of Ti75-xNb25Zrx (x = 0-6) Alloys, J. Alloys Compd., 2009, 486, p 628–632

    CAS  Google Scholar 

  32. J. Málek, F. Hnilica, J. Veselý, B. Smola, K. Kolařík, J. Fojt, M. Vlach, and V. Kodetová, The Effect of Zr on the Microstructure and Properties of Ti-35Nb-XZr Alloy, Mater. Sci. Eng., A, 2016, 675, p 1–10

    Google Scholar 

  33. M.J. Lai, T. Li, and D. Raabe, ω Phase Acts as a Switch Between Dislocation Channeling and Joint Twinning- and Transformation-Induced Plasticity in a Metastable β Titanium Alloy, Acta Mater., 2018, 151, p 67–77

    CAS  Google Scholar 

  34. H. Tobe, H.Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Origin of 332 Twinning in Metastable β-Ti Alloys, Acta Mater., 2014, 64, p 345–355

    CAS  Google Scholar 

  35. Y. Mantani, Y. Takemoto, M. Hida, and A. Sakakibara, Formation of a″ Martensite and {332}〈113〉Twin During Tensile Deformation in Ti-40 mass%Nb Alloy, J. JPN. I. MET., 2002, 10, p 1022–1029

    Google Scholar 

  36. Y. Takemoto, M. Hida, and A. Sakakibara, Martensitic, 332〈113〉Twin in β Type Ti-Mo Alloy, J. JPN. I. MET., 1996, 60, p 1072–1078

    CAS  Google Scholar 

  37. X.H. Min, S. Emura, T. Nishimura, K. Tsuchiya, and K. Tsuzaki, Microstructure, Tensile Deformation Mode and Crevice Corrosion Resistance in Ti-10Mo-xFe Alloys, Mater. Sci. Eng., A, 2010, 527, p 5499–5506

    Google Scholar 

  38. Q. Li, P. Miao, J.J. Li, M.F. He, M. Nakai, M. Niinomi, A. Chiba, T. Nakano, X.Y. Liu, K. Zhou, and D. Pan, Effect of Nb Content on Microstructures and Mechanical Properties of Ti-xNb-2Fe Alloys, J. Mater. Eng. Perform., 2019, 16, p 5501–5508

    Google Scholar 

  39. M.J. Lai, C.C. Tasan, and D. Raabe, On the Mechanism of 332 Twinning in Metastable β Titanium Alloys, Acta Mater., 2016, 111, p 173–186

    CAS  Google Scholar 

  40. X.H. Min, X.J. Chen, S. Emura, and K. Tsuchiya, Mechanism of Twinning-Induced Plasticity in β-type Ti-15Mo Alloy, Scr. Mater., 2013, 69, p 393–396

    CAS  Google Scholar 

  41. M. Niinomi, T. Akahori, and M. Nakai, In situ X-ray Analysis of Mechanism of Nonlinear Super Elastic Behavior of Ti-Nb-Ta-Zr System Beta-Type Titanium Alloy for Biomedical Applications, Mater. Sci. Eng., C, 2008, 28, p 406–413

    CAS  Google Scholar 

  42. X. Jin, S. Emura, X.H. Min, and K. Tsuchiya, Strain-Rate Effect on Work-Hardening Behavior in β-type Ti-10Mo-1FE alloy with TWIP effect, MATER. Sci. Eng., A, 2017, 707, p 701–707

    Google Scholar 

  43. M. Abdel-Hady, K. Hinoshita, and M. Morinaga, General Approach to Phase Stability and Elastic Properties of β-type Ti-Alloys Using Electronic Parameters, Scr. Mater., 2006, 55, p 477–480

    CAS  Google Scholar 

  44. J. Chen, F.C. Ma, P. Liu, C.H. Wang, X.K. Liu, W. Li, and Q.Y. Han, Effects of Nb on Superelasticity and Low Modulus Properties of Metastable β-Type Ti-Nb-Ta-Zr Biomedical Alloys, J. Mater. Eng. Perform., 2019, 28, p 1410–1418

    CAS  Google Scholar 

  45. Y.H. Li, C. Yang, H.D. Zhao, S.G. Qu, X.Q. Li, and Y.Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Mater., 2014, 7, p 1709–1800

    Google Scholar 

  46. Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, and R. Yang, Elastic Deformation Behaviour of Ti-24Nb-4Zr-7.9Sn for Biomedical Applications, Acta Biomater, 2007, 3, p 277–286

    CAS  Google Scholar 

  47. T. Ahmed, M. Long, J. Silvestri, C. Ruiz, and H. Rack, A New Low Modulus, Biocompatible Titanium Alloy, Titanium’95 Science and Technology UK, 1996, II, p 1760–1767

    Google Scholar 

  48. J.H. Gao, Y.H. Huang, D.K. Guan, A.J. Knowles, L. Ma, D. Dye, and W.M. Rainforth, Deformation Mechanisms in a Metastable Beta Titanium Twinning Induced Plasticity Alloy with High Yield Strength and High Strain Hardening Rate, Acta Mater., 2018, 152, p 301–314

    CAS  Google Scholar 

  49. M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques, and F. Prima, On the Design of New β-Metastable Titanium Alloys with Improved Work Hardening Rate Thanks to Simultaneous TRIP and TWIP effects, Scr. Mater., 2012, 66, p 749–752

    CAS  Google Scholar 

  50. C. Liu, J.Q. Qin, Z.H. Feng, S.L. Zhang, M.Z. Ma, X.Y. Zhang, and R.P. Liu, Improving the Microstructure and Mechanical Properties of Zr-Ti Alloy by Nickel Addition, J. Alloys Compd., 2018, 737, p 405–411

    CAS  Google Scholar 

  51. C.D. Rabadia, Y.J. Liu, S.F. Jawed, L. Wang, Y.H. Li, X.H. Zhang, T.B. Sercombe, H. Sun, and L.C. Zhang, Improved Deformation Behavior in Ti-Zr-Fe-Mn Alloys Comprising the C14 Type Laves and β Phases, Mater. Des., 2018, 160, p 1059–1070

    CAS  Google Scholar 

  52. L.Y. Du, L. Wang, W. Zhai, L. Hu, J.M. Liu, and B. Wei, Liquid State Property, Structural Evolution and Mechanical Behavior of Ti-Fe Alloy Solidified Under Electrostatic Levitation Condition, Mater. Des., 2018, 160, p 48–57

    CAS  Google Scholar 

  53. H. Matsumoto, S. Watanabe, and S. Hanada, Microstructures and Mechanical Properties of Metastable TiNbSn Alloys Cold Rolled and Heat Treated, J. Alloys Compd., 2007, 439, p 146–155

    CAS  Google Scholar 

  54. M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng., A, 1998, 243, p 231–236

    Google Scholar 

  55. Y.Z. Zhan, C.L. Li, and W.P. Jiang, β-type Ti-10Mo-1.25Si-xZr Biomaterials for Applications in Hard Tissue Replacements, Mater. Sci. Eng. C, 2012, 32, p 1664–1668

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Natural Science Foundation of Shanghai, China (No. 15ZR1428400), “The Belt and Road” international cooperation project of Shanghai Science and Technology Committee (No. 19510744700), the project of Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development, Tohoku University, Japan sponsored by Ministry, Education, Culture, Sports, Science and Technology, Japan, and the Grant-in Aid for Scientific Research (B) (No. 17H03419) from Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Cheng, C., Li, J. et al. Low Young’s Modulus and High Strength Obtained in Ti-Nb-Zr-Cr Alloys by Optimizing Zr Content. J. of Materi Eng and Perform 29, 2871–2878 (2020). https://doi.org/10.1007/s11665-020-04826-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04826-6

Keywords

Navigation